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Abstract. The Industrial Internet of things (IIoT) enabled smart system has entered into a golden 
era of rapid technology growth. IIoT is a concept to make every system interrelated such that 
they are able to collect and transfer data over a wireless network without human intervention. In 
this paper, we discuss the development of an IoT enabled system to monitor the vibration 
signature of equipment as part of prognosis and availability management system (P&AM) that 
serves to prevent unplanned operation downtime and catastrophic failure of a whole system. In 
order to simply the complexity of processing video content and performing inference, the Intel 
OpenVINO platform was selected because of it’s simplicity, portability across Intel AI 
processors, performance and comprehensiveness of it’s analytical and diagnostics capabilities 
that can be tested in Intel’s DevCloud. The IIoT system consists of a High Performance 
Computing (HPC) platform based on Intel’s Xeon processors and Movidius AI accelerator, 
Intel’s OpenVINO toolkit for AI, a Regul high performance programmable controller capturing 
vibration data through sensors and a low-latency network connection. Notifications of anomalies 
are sent to a smartphone. This paper reveals an approach for the features extraction and selection, 
known as feature engineering, of the equipment component we want to protect. Feature 
engineering is the first step for the P&AM of these components and extends to the whole system. 
The broader aim of this paper is to help technical leaders at the exploring or experimenting 
stages of their AI framework to learn the concepts of implementing algorithms using datasets that 
have real value to their companies. Datasets generated and referred to in this paper were 
generated by simulation under various  material failure scenarios. 
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1 Introduction 

OEE (Overall Equipment Effectiveness) is the gold standard for measuring manufacturing 
productivity. It identifies the percentage of manufacturing time that is truly productive. An OEE 
score of 100% means you are manufacturing only good parts, as fast as possible, with no stop 
time. In the language of OEE that means 100% Quality (only Good Parts), 100% Performance 
(as fast as possible), and 100% Availability (no Stop Time). The biggest problem with OEE is 
that it doesn’t build risk of disruption into the equation. Prognostics and Availability 
Management (P&AM) is an engineering discipline that identifies fault severity and predicts the 
remaining useful life (RUL) of the target system. P&AM is the enabling technology towards 
condition-based maintenance (CBM), which is the future maintenance strategy as opposed to 
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corrective maintenance (CM) and periodic maintenance (PM). Numerous books have been 
published recently addressing various aspects such as signal processing, data driven diagnostics, 
prognostics, and practical applications. In general, P&AM consists of three steps: ( 
1) Data acquisition and features extraction 
2) Fault diagnosis 
3) Failure prognosis.  

In machinery, gears, bearings, impellers, motors, shafts, footings, foundations are all important 
components because they transmit or absorb power while supporting applied loads in the system. 
Therefore, their unexpected failure and degradation during operation can lead to economic loss 
and catastrophic accidents. In fact, the failure of these components accounts for a large 
proportion of whole system failures, which is the main reason for focusing on P&AM [1] [2]. 
Thus, the feature engineering of these components is of crucial importance. While there have 
been many studies in this area, their concern was mostly on new algorithm development 
including the deep learning (DL) approaches recently gaining popularity. Relatively little 
attention has been given to beginners to implement value-added DL applications. In light of this 
shortcoming, this paper also represents a roadmap for performing feature engineering.

As P&AM is performed from signals that are obtained from sensors such as vibration, acoustic 
emissions, acceleration or other signal transmitters, it is crucial to remove undesired noise and 
extract the valuable information called features from the raw signals in the first step. Based on 
the extracted features, the fault mode and its severity are identified through data from simulation 
for various material failures, and RUL is predicted using the prognosis algorithm. While there are 
many useful features for this purpose today, good features vary depending on P&AM steps and 
applications. For example, in the diagnosis, features should show a clear difference between the 
normal and fault states to distinguish the health condition. In the prognosis, on the other hand, 
features showing a monotonic trend over time are considered good indicators for RUL 
prediction. In this context, the process of extracting relevant features is also called “feature 
engineering”.  

Advances in high performance computing (HPC) are unlocking ground-breaking possibilities for 
a whole range of industries. Yet, it is not just computing power gains that companies stand to 
benefit from. As new technologies, such as Artificial Intelligence (AI) and the Internet of Things 
(IoT), continue to evolve, organizations are presented with more opportunities to apply HPC 
capabilities in new ways. In this paper, we present a system architecture to take real-time 
streamed sensor information and process it to perform P&AM. Using Intel high performance 
chip technology and OpenVINO toolkit for IoT, the process of analyzing data is simplified by 
using deep learned models to identify patterns on the sensor signal rather than more intensive 
continuous computing on the discrete raw data. Therefore, we perform analysis in the time  
domain instead of the frequency domain. This allows us to perform an optimal P&AM analysis 
regardless of the feature(s) deemed critical to monitor for the application at hand. The data 
coming from appropriate sensors in locations determined by the results of feature engineering is 
captured by a programmable controller (PLC) which in turn sends the signal to a centralized 
Xeon CPU-based server which combines inputs from all sources and streams the signal in real-
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time to the Cloud to perform signal pattern recognition and detection and sends resulting 
information to an app on a smartphone. 

2 P&AM Framework and Datasets 

The P&AM framework can be divided into several steps as shown in Figure 1. After the data 
acquisition, the signal processing step is performed which aims to remove noise from the raw 
signal to obtain only the necessary information for the diagnosis and prognosis. Discrete signal 
processing is performed to obtain only the necessary information for the diagnosis and prognosis. 
Residual fault signals are then enhanced by signal enhancement techniques. If necessary, the 
signals, whether in their raw form or after processing, can also be decomposed into various 
components to facilitate the exploration of fault information. Detailed information about the 
techniques is addressed in a previous study [3]. Once the signal processing is done, the feature 
engineering process is conducted next, where the features that represent the fault or degradation 
of the system can be extracted, evaluated, classified and selected as shown in Figure 1. Finally, 
by exploiting these features, fault diagnosis is performed to classify the state of the target system 
or failure prognosis is performed to predict when the failure will occur in the future. 
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Note that feature engineering requires substantial skill and expertise in data science, which is the 
key to the success of the subsequent steps: diagnosis and prognosis. The feature engineering 
process is illustrated in Figure 2.

In P&AM study of equipment and machinery, the general method of data acquisition is to 
measure vibration by attaching an accelerometer to the critical components. Gathering the data 
is, however, too expensive, requiring a test rig, sensors, and time-consuming tests. To avoid this, 
environmental vibration analysis can be obtained for critical components under different material 
failure models through simulation or a digital twin, a virtual representation that serves as the 
real-time digital counterpart of a physical object. In essence, there are two categories of data that 
are needed for P&AM. Diagnostic data are obtained by running the component under normal and 
fault conditions, respectively. Prognostic data are obtained by running the components constantly 
from the normal to the failure state.  The desired conditions for diagnostic and prognostic data 
can be chosen under very specific mechanical conditions and loads chosen by the design and 
mechanical engineers. Heat maps are used to assess the condition under which we want to 
generate the data as shown in Figure 3.
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Datasets derived through simulation or a digital twin provide two main advantages: provide 
high-value data specific to a business’ assets and, a way to improve Return of Investment (ROI) 
when deciding on IoT and ML projects because of the focus on risk control to critical business 
assets disruption rather than looking to expose it before its trips the company.  Once the datasets 
are created, feature engineering can be performed to determined the best way to create the 
machine learning model to best perform P&AM.  

3 Feature Engineering 

It is important at this stage to mention why we need to perform feature engineering for P&AM. 
Traditionally, machine learning relies on a prescribed set of “features” that are considered 
important within the dataset. In our P&AM application, features relevant to a machine’s 
likelihood to fail might be the vibration signature of a bearing, a gear, and structure [4]. The 
process of building features into a machine learning algorithm is known as “feature engineering.” 
Feature engineering requires deep expertise in a given subject (here, the specific machine) and 
can be a  very labor-intensive process for the data scientist. 
Deep learning is a type of machine learning that has received increasing focus in the last several 
years. With deep learning, the algorithm doesn’t need to be told about the important features. 
Instead, it is able to discover features from data on its own using a “neural network.” The name 
is inspired by a mathematical object called an artificial neuron that “fires” if the combination of 
inputs exceeds some threshold, just like a neuron in the brain does. Artificial neurons can be 
arranged in layers, and deep learning involves a “deep” neural network (DNN) that has many 
layers of artificial neurons. 
Deep learning enables us to avoid feature engineering altogether. Given enough “labeled 
data” (i.e., images of known vibration signatures or patterns) and the right tuning, a deep 
learning model will identify the most relevant features from the data on its own. Deep learning 
represents a conceptual shift in thinking, from "How do you engineer the best features?" to "How 
do you guide the model toward discovering the best features?” Due to the specialized and custom 
nature of the system we want to implement, it is the latter question that we answer in the 
following sections. 

4 Feature Extraction 

Feature engineering begins with feature extraction from data in its raw form or after going 
through noise removal by signal processing depending whether the data is acquired in a live or 
simulated setting. The features are usually divided into three categories: time domain, frequency 
domain, and time-frequency domain. Among these, time-domain features are the easiest to 
analyze and most widely used, especially with industrial control systems that capture data and 
perform functions based on the time domain [5]. These are addressed in the following sections. 
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In feature engineering, several signal processing steps are usually taken and appropriate features 
are extracted from each step that enable fault identification. This is shown in Figure 4, which 
indicates that the raw data are processed step by steps and after each step, relevant features are 
extracted. An example of the signal processing process in time domain and its Fourier transform 
in the frequency domain are also illustrated. Note that the features are divided into two groups: 

Component specific features shown by the green dotted box, and time-domain features in the 
orange dotted box. Note that the component specific features have generally been developed for 
those components for fault diagnosis and can be found in many journals and articles to that 
affect. Also, more and more component or Original Equipment Manufacturers have this 
important data important for understanding key maintainability factors of their products.

While there are many benefits to performing harmonic analysis and generating FFT on time-
domain data, it may not be necessary to add this compute intensive functionality to get the most 
out of a P&AM system [5]. Recall that the time domain features can be extracted either from the 
raw signal directly or after taking this step depending on the problem. The engineer and data 
scientist will want to do more investigative work to determine the need to work in the frequency 
domain or if a simpler system based on time-domain analysis will accomplish the task.  A list of 
general time domain features are listed in Table 1. 
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Figure 5 is the result of extracted time domain features for an example dataset: 6 normal of a 
critical component in a machine and 11 fault data, in which the acronyms are found in Table 1 . 
Note that each set of feature data is normalized by mean and standard deviation, respectively. In 
the results, most of the features classify the fault (x) from the normal (o) well, but some such as 
SK and SF do not, which means that further processing is necessary to select only the useful 
features. 
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5 Feature Evaluation and Selection 

Feature evaluation is to assess how well the features can classify between the normal and faults 
conditions. Once a method is done, a few of the most significant features can be selected for the 
efficient fault classification. Feature evaluation involves analyzing the class separability per 
certain criteria. Here, we need to look at the number of classes represented in our datasets. 
Referring back to Figure 5, we note that there are two classes (normal and fault) that distinguish 
our datasets. However, if the critical component is made up of more than one unique moving part 
like a gearbox, a solenoid valve or a compressor which can exhibit failure modes based on 
different sub-component failures there can be three or more classes. Figure 6 shows the 
normalized time domain features for an sample component with three classes.
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Feature selection will occur in two major stages: Diagnosis and Prognosis. The diagnosis stage 
will reveal the features that are the most likely to identify the presence of a problem by 
examination of the vibrations in the time domain. Prognosis reveals the feature that is the most 
likely to tell us about the risk of a failure and hence gives us information about the risk to the 
availability of the equipment. We examine these two stages below:

 5.1 Diagnosis 

  Generally, to determined the best features to select, we look to determine the samples that 
cluster tightly around their class means and seek the situations where classes are well 
separated from each other. To do so, performing Fisher’s Discriminant Ratio (FDR) and 
looking at the Probability Density Functions (PDF) of each time domain feature for each 
class will reveal the feature that is most clearly distinguished from the others in a range.  
This works well for datasets with two classes. For datasets with three or more classes, the 
J3 function (expanded FDR) can be used to measure the separability of the features 
between classes.  In both case, we are looking for the scatter plot of the pair of featured 
with a high FDR or J3 as shown in the example plot below. It is left to the reader to look 
up the mathematical functions of these two classification separability analysis methods. 
The picture below is a good example of a feature pair being strong candidate for 
selection. 

  

5.2 Prognosis 

  In the final step of our feature engineering process, we look at the prognosis which is the 
forecasting of the likelihood of a component failure. In other words, which feature(s) are 
the most heavily weighted. Because industrial environments have a tendency to be noisy, 
it is best to use an index that decomposes sub-bands rather than the raw signal to capture 
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the most information. The latest scientific literature, proposes the following criteria for 
feature selection in such an environment and its based on the  calculation of average of 
the three following metrics for each feature: 

•   Corr(T, X) - Correlation of time and feature which is a measure of linearity 
• Mon(T, X) - Monotonicity of time and feature which is a measure of the 

degree of continuous increase and decrease of the feature over time 
• Rob(X) - Robustness which has to do with the noise arising from the raw 

signal. 

This index gives us the feature with its likelihood of predicting unavailability.  A higher 
index for a feature thus tells us that it is a good candidate to select for a monitoring 
system to be effective at P&AM using our AI system as it can be monitored in the time 
domain. Figure 7 shows the results of the calculations for a given application. In this 
example, P2P (difference between maximum and minimum vales of the signal at a given 
time) shows the highest value.  This gives a strong indication that the feature P2P is the 
best feature for P&AM. 

6 Proposed System Architecture & performance 

The P&AM system is a system based on Industrial Internet of Things (IIoT) with the capability 
to notify a user when an anomaly is detected.  The system is implemented within three levels of 
the ISA-95 technology stack standard.  The Level 1 implementation involves a Regul PLC to 
capture the raw data from the vibration sensors because of its robustness to the industrial 
environment where the equipment is located. Since vibration data is provided by a transmitter 
that de-noises and conditions the signal, the raw data can be used directly to perform frame 
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prediction on the streamed signal/time trend.  The Level 2 implementation involves a server to 
process the raw signals and stream them in the time domain to the L3 Cloud server that performs 
the video inferencing algorithm with a combination Intel Xeon or Core i7 CPU and Movidius 
VPU AI accelerator for added performance. From benchmarking tests on Intel DevCloud, we 
determined that adding the AI accelerator for the Level 3 implementation, which is the most 
compute intensive, was the most effective at providing optimal performance to reach 153 frames 
per second as shown below, which ensures that the streaming is smooth. 

The proposed system architecture in Figure 8 works as follows. As we determined above, it 
became clear through our feature selection that we should monitor P2P for an optimal 
performing P&AM system.  The Level 3 system’s AI model was developed using examples of 
snapshots from simulation of the vibration patterns or signatures of the components being 
monitored.  As the raw signal is being streamed, the AI inference engine  continually checks the 
video stream for the P2P patterns used to teach the model. When no pattern is matched, the 
system captures the unknown vibration signature and sends an anomaly warning to a user via and 
app on a smartphone. 
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An actual set up consists of extruded-slotted aluminum framing designed in an ergonomically 
construction as shown in Figure 9. Highly modular and connectorized, the system is designed for 
quick maintenance and parts replacement using IEC 61131, ISO 9001 standards as well as and 
open software standards for easier compliance and upgrades with evolving technologies. 
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7 System Software 

The P&AM system is implemented on Intel Xeon CPU-based platform in Linux Ubuntu OS 
environment which supports TCP/IP, HTTPs, JSON, OneAPI, SSH.  Intel’s OpenVINO toolkit 
which includes OpenCV is used for the inferencing engine to develop the AI model and Python 
for coding. The main script executing at Level 3 which captures the frames is described below in 
Figure 10. 

The function running is process_frame() which returns value True if the frame is ok and 
execution should continue. If the return value is False, the frame is dropped. We analyze the 
video frame for each of the regions in the frame, for each of the tensors in the region. We are not 
processing the detection results, so if it’s a detection tensor we don’t touch it but if it’s a 
classification result, we take the last layer name. If this layer is Feature_P2P_value, then 
according to the description, the data is the P2P feature and we just need to multiply it by 100 
according to the scaling requirements. If the layer is anomaly, then we have the probability, if 
normal or abnormal. 

The Regul PLC is coded in a common programming language known as Ladder logic.  
Conditioned vibration signals are read through vibration sensor input card, samples at a 
configurable rate of 500ms and stored in FIFO tables which are read by the Level 2 computer, 
plotted and converted into a streamed video interpreted by the OpenVINO-based inference 
engine shown in Figure 9 which runs on the Level 3 system. 

8 Conclusion 

The development of HPC platform and AI toolkits have fuelled the development of more 
efficient and innovate ways for diagnostic and prognostic analysis. In this paper, we presented a 
proposed an approach to an equipment prognostic & availability management system where 
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feature engineering is required to take a central role [6] [7]. To date, literature demonstrating a 
how-to roadmap for feature engineering is very scarce, especially for industrial applications. 
Although deep learning models reduce the need for feature engineering, it is still the case that 
more specialized IIoT and AI models need to be better guided to perform on the most impactful 
features that can provide highest Return of Investment (ROI) of an AI implementation. It is to 
this end that this paper was written for those deciding where to start on their Digital 
Transformation journey. 
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